Сложные проценты

В этом случае в договорах указывается годовая ставка r и количество начислений процентов. Начисление производится каждый раз на наращенную сумму. В этом случае сумма долга к концу первого периода будет равна

S1 = P+P×r = P(1+r)

К концу второго периода

S2 = S1+S1×r = S(1+r) = P(1+r)2

В общем виде наращенная по схеме сложных процентов сумма вычисляется по формуле

S=P(1+r)n

Задание 3

Кредит в 100 000 руб. предоставили на три года под 20 % годовых с начислением по схеме сложных процентов. Какую сумму придется возвращать?

Решение

Р = 100 000 руб, r = 20 %, n = 3 года.

S = Р(1+r)n = 100 000(1+0,2)3 = 172 800 (руб).

Задание 4

Ссуда в 10 000 долларов дана в долг на 2 года под 12 % годовых с ежеквартальным начислением. Какова будет сумма накопленного долга?

Решение

Р = $10 000, r = 12 %, n = 2 года.

Так как процентная ставка дана годовая, а период начисления процентов — квартал, сначала рассчитаем процентную ставку за период, она равна:

rn = r/n = 12%/4 = 3%

Тогда число периодов (кварталов) равно 2×4=8. Накопленный долг равен

S = Р(1+rn)n = 10 000(1+0,03)8 = 12 666,7 (долларов).

Для вычисления по схеме сложных процентов в Excel используется функция БC.

Задание 5

Ссуда в размере 30000 долларов дана на три года под ставку 32 % годовых с ежеквартальным начислением. Определить сумму конечного платежа.

Решение

Здесь базовый период — квартал. В году четыре квартала, значит срок ссуды 3*4=12 периодов. За один период выплачивается 32 %/4=8 %. Тогда формула для решения задачи примет вид

=БC(32%/4;3*4;;30000).

Она возвращает результат -75 545,10. Знак «минус» означает, эта сумма подлежит возврату.

Задание 6

Банк принимает вклады на срок 3 месяца с объявлением годовой ставки 100 % или на шесть месяцев под 110 %. Как выгоднее вкладывать деньги на полгода: дважды на три месяца или один раз на шесть месяцев?

Решение

Считаем, что вклад равен 1 000 руб. Вычислим наращение суммы для обеих предлагаемых схем вклада. Так как деньги вкладчик отдает банку, начальное значение должно иметь знак «минус»!

Для первой схемы получаем формулу

=БС(100%*3/12;2;;-1000).

Она возвращает результат 1 562,50 руб.

Для второй схемы формула

=БС(110%*6/12;1;;-1000) возвращает результат 1550 руб.

Значит, вклад по первой схеме выгоднее.

Постоянные ренты

Рента — это финансовая схема с многократными взносами или выплатами R1 = R2 = … = Rn, разделенными равными промежутками времени. Для вычисления ренты также можно использовать функцию БС.

Задание 7

На счет в банке вносится сумма 10 000 долларов в течение 10 лет равными долями в конце каждого года. Годовая ставка 4 %. Какая сумма будет на счету через 10 лет?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *